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ABSTRACT Accurate estimates of demographic parameters are critical to the management of wildlife
populations, including management programs focused on controlling the spread of zoonotic diseases. Rabies
managers in the United States Department of Agriculture (USDA) have applied a simple raccoon (Procyon
lotor) abundance index (RAI) based on cumulative catch of unique raccoons per unit area to determine
vaccine-bait distribution densities. This approach was designed to allow for both the collection of biological
samples and to index raccoon abundance to determine bait densities for oral rabies programs. However, post-
baiting surveillance data indicate that, on average, only 30% of raccoons sampled have vaccine induced rabies
antibody titers, suggesting that bait densities may not be well calibrated to raccoon densities. We trapped
raccoons using both capture-mark-recapture (CMR) and the standard RAI to evaluate the accuracy of the
current index-based methodology for estimating raccoon density. We then developed a resource selection
function from spatial data collected from radio-collared raccoons to standardize trap placement within the
existing RAI protocol, and evaluated the performance of this modified RAI approach relative to CMR for
estimating raccoon population size. Both abundance and density estimates derived using the RAI consistently
underestimated raccoon population sizes compared with CMR methods. Similarly, although the use of
resource selection models to inform trap placement appeared to improve the accuracy of the RAI, the
effectiveness of this method was inconsistent because of an inability to account for variance in detection
probabilities. Despite the logistical advantages of using indices to estimate population parameters to
determine vaccine bait distribution densities, our results suggest that adjustments may be necessary to
more accurately quantify raccoon abundance, which should improve the effectiveness of rabies management
in the United States. In particular, estimates of detection probabilities are needed to more precisely quantify
abundance estimates and ensure appropriate vaccine coverage rates. � 2012 The Wildlife Society.
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Zoonoses pose significant risks to animal and human health,
and result in substantial economic and public health burdens
(Woolhouse and Gowtage-Sequeria 2005, Cutler et al.
2010). Increasingly, wildlife managers must deal with the
specter of zoonotic disease and their potential impacts to
wildlife populations (e.g., Rodwell et al. 2001, Miller et al.
2003, Keyser et al. 2005), humans (Rupprecht et al. 1995,
Daszak et al. 2000), and livestock (Kuiken et al. 2005).
Vaccination of reservoir hosts, which reduces the number
of susceptible individuals in a population, has long been the
standard approach to control disease in both human and
domestic animal populations. Recently, vaccination pro-

grams have shown promise for controlling some diseases
in wildlife, including rabies (MacInnes et al. 2001), sylvatic
plague (Mencher et al. 2004), and bovine tuberculosis
(Roberts 1996). Rabies control programs, in particular,
have used the landscape–scale distribution of vaccine-laden
baits to control or eliminate rabies over extremely large areas
in North America and Europe (Mackowiak et al. 1999,
MacInnes et al. 2001). In 2009, for example, the National
Rabies Management Program and their cooperators distrib-
uted approximately 6.5 million vaccine baits in 15 states in
ongoing efforts to halt the spread of raccoon (Procyon lotor)-
variant rabies (United States Department of Agriculture
2009). Such large-scale vaccine distribution campaigns can
be logistically cumbersome and vulnerable to a myriad of
spatial, temporal, and environmental issues affecting efficacy
(Slate et al. 2005, Sattler et al. 2009). Arguably, once a
suitable vaccine is developed, the issues most salient to
optimizing a vaccine campaign are those regarding bait
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distribution patterns relative to habitat preferences and
abundance of reservoir species.
To ensure optimal oral rabies vaccination coverage, the rate

of vaccine bait application must be calibrated to the abun-
dance of the target population. Currently, the standard
for estimating raccoon abundance involves capturing,
marking, and recapturing individuals, and then using model-
ing procedures based on capture and recapture probabilities
to estimate population size (Pollock et al. 2002). Deriving
mark-recapture estimates can be labor-intensive and com-
putationally difficult, often making the wide-scale use
of these techniques (e.g., implementation on a national
scale) impractical or a significant economic and logistical
challenge. To overcome these challenges, the National
Rabies Management Program has developed and applied a
minimum number-known-alive raccoon abundance index
(RAI), recognizing that this approach produces conservative
indices to raccoon abundance and may need modification,
particularly in areas that support high raccoon densities
(Ramey et al. 2008). Indeed, seroconversion rates within
bait distribution zones generally average 30% (Slate et al.
2009), suggesting that inadequate bait densities, which may
be exacerbated by competition for baits by Virginia opossums
(Didelphis virginiana; Smyser et al. 2010), or deficiencies in
the vaccine and/or bait may be contributing to less than
desired seroconversion rates among raccoons. Generally,
vaccination rates of 50–70% are considered sufficient to
break disease transmission (Tinline et al. 2007, Thulke
and Eisinger 2008, Recuenco et al. 2009), underscoring
the need to continue to evaluate practical methods of esti-
mating raccoon densities to assist with oral rabies vaccination
baiting strategies.
Currently, trap selection sites used to calculate RAI are

based on qualitative guidance provided to experienced trap-
pers. This approach does not incorporate estimates of de-
tectability, a deficiency that may result in faulty inferences
about the population in question (Diefenbach et al. 2003,
Norvell et al. 2003, Farnsworth et al. 2005). Given the wide
disparity between ideal (50–70%) and realized (30%) vacci-
nation rates, an evaluation of RAI performance is needed.
Thus, the goal of our research was twofold. First, we evalu-
ated the performance of the RAI relative to standard grid-
based capture-mark-recapture (CMR). Next, we developed a
standardized, resource selection function (RSF)-based meth-
od for determining trap placement that is practical and
realistic for use in agricultural ecosystems to improve RAI
performance. We then used our RSF model to inform RAI
trap placement and evaluated the performance of the RSF-
modified index relative to grid-based CMR.

STUDY AREA

This study took place within the Upper Wabash River Basin
in north-central Indiana, USA. Approximately, 71% of the
land area within the Upper Wabash River Basin was culti-
vated for agricultural production, with corn and soybeans
comprising the primary crops. The remaining forest habitat
(predominantly oak-hickory-maple [Quercus-Carya-Acer]) in

the basin was highly fragmented, with contiguous forest
tracts confined to major drainages where frequent flooding
or steep topography made the land unsuitable for crop pro-
duction. The distribution of forest patch sizes within our
study area was dominated by patches <5 ha (72%); large
patches (>50 ha) comprised <3% of forest patches within
the landscape.
We selected 4 study sites within the Upper Wabash River

Basin. Each of these sites was 3 km2 in size and was estab-
lished following the standard RAI protocol; boundaries were
delineated to minimize edge effects, and were approximately
square to rectangular in shape. Sites ranged from highly
fragmented (<7% forested) to predominantly forested
(>70% forested) in an effort to represent the range of
landscape configurations present in agricultural ecosystems.
During 2009, we selected 1 continuously forested (site B)
and 1 fragmented site (site A) to contrast density estimates
derived using the standard RAI protocol (National Rabies
Management Program 2009) and grid-based CMR meth-
ods. In 2010, we added 2 additional sites (1 continuously
forested site [site D] and 1 fragmented site [site C]) and
trapped all 4 sites using CMR as a baseline measure of
raccoon density but, because of logistical constraints, selected
2 sites (A and C) to be trapped using the RAI protocol and
the remaining 2 sites (B andD) to be trapped using a spatially
informed RAI protocol (SI-RAI, see Methods section
below; Table 1). As a result, we had no between-year repli-
cation for sites C and D and the SI-RAI protocol.

METHODS

Raccoon Capture and Handling
Regardless of the trapping protocol used (CMR, RAI, or SI-
RAI), we immobilized all newly captured raccoons with an
intramuscular injection of Telazol (Fort Dodge Animal
Health, Fort Dodge, IA) at a dosage of 5 mg/kg of estimated
body mass. We ear-tagged (Monel #3, National Band and
Tag Company, Newport, KY) all captured individuals
and collected standard morphological and demographic
data. We classified raccoons as juveniles (1 yr), yearlings
(2 yr), or adults (�3 yr) based on patterns of tooth wear
(Grau et al. 1970). We also tagged and processed young-of-
the-year, but excluded these individuals from all analyses
because trapping spanned the time period prior to, and while
young-of-the-year were emerging from natal dens. For cap-
tured individuals that we had previously processed using an
alternate trapping protocol (see below), we recorded the tag
number and released them without immobilization. To en-
sure population estimates were not biased because of misread
tags, we cross-referenced all recaptured individuals with a list
of tagged animals. Similarly, we used genetic data collected
for all sampled raccoons to identify whether any individuals
had lost their tags and been assigned as new individuals on a
subsequent trapping occasion (see Beasley et al. 2011 for
details). All trapping methods conformed to American
Society of Mammalogists guidelines (Gannon et al. 2007)
as well as Purdue University Animal Care and Use
Committee policies (protocol 01-079).
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RAI Estimates

We estimated raccoon densities following the standard RAI
protocol (National Rabies Management Program 2009) for
sites A and B in 2009, and A and C in 2010 (Table 1). The
RAI protocol relies on expert knowledge to guide trap
site selection. Given that we had been capturing raccoons
in the study area for over 8 years, we considered our knowl-
edge in selecting trap sites to be equivalent to that of
National Rabies Management Program trappers. Within
each site, we set 50 live traps (Tomahawk Live Trap Co.,
Tomahawk, WI) baited with Hard-Core1 Raccoon Lure #1
(Wildlife Research Center, Ramsey, MN) and marshmal-
lows at locations likely to capture raccoons. We spaced traps
within forested areas to ensure adequate coverage of the
entire study area. We trapped each study area for 10 days
and left traps in place as long as captures occurred. If no
captures occurred for a 3- to 4-day interval, we moved traps
to new locations >30 m from the previous location. We
estimated relative density by dividing the number of unique
individuals captured by the study area size (3 km2).

CMR Estimates

We used traditional grid-based mark-recapture procedures
to estimate densities of raccoons in sites A and B in 2009 and
in sites A, B, C, and D in 2010. To accomplish this, we
established trapping grids throughout each 3-km2 study area
boundary. Within heavily forested sites, we separated grids
by approximately 1 home range (73 ha; Beasley et al. 2007b),
whereas we trapped all unique forest patches in fragmented
sites. Trapping and handling procedures were identical to
those described in Beasley and Rhodes (2008). Briefly, we
trapped raccoons using box live traps (Tomahawk Live Trap
Co.) baited with commercial cat food. We placed traps in a
grid (50-m spacing) within forest patches and pre-baited for
3 nights. Following the pre-baiting period, we opened and
checked traps for 10 consecutive nights. The total number of

traps per grid varied with forest patch size, with a maximum
of 30 traps placed in a single grid. Trapping grids could not
always be separated by an entire home range because of the
spatial arrangement of forest habitat in our study landscape;
as a result, several individuals were captured in 2 disparate
trapping grids within a site (particularly the fragmented
sites). For individuals captured in >1 trapping grid (<8%
of individuals), we eliminated the capture history from the
grid with the fewest numbers of captures to minimize any
bias in CMR density estimates. We could not combine
capture histories for these individuals across grids because
not all grids were opened concurrently within some sites.
To estimate raccoon abundance based on CMR capture

histories, we followed the methods outlined in Beasley et al.
(2011). Briefly, we modeled abundance using the Huggins
closed capture-recapture modeling procedure (Huggins
1989) in Program MARK (White and Burnham 1999).
We developed separate models for 2009 and 2010 to remove
any bias in inter-annual capture probabilities. We pooled
capture histories for all unique individuals captured within
the same year (all grids combined) to derive robust estimates
of the capture (p) and recapture (c) parameters for the com-
bined data set, but we obtained grid-specific estimates of N
by treating each trapping grid as a disparate attribute group
in MARK (White 2005). We included both sex and age of
raccoons as covariates. We evaluated model fit using a bias-
corrected version of Akaike’s Information Criterion (AICc)
and used model averaging to determine final population sizes
for all models deviating �4 AICc units from the model with
the smallest AICc value (Burnham and Anderson 2002). We
pooled abundance estimates (and associated 95% CI) for all
grids within each site to estimate the overall abundance of
raccoons at each site.
Based on MARK estimated population sizes, we estimated

densities (with 95% CI) for each site by dividing population
size by the relative effective trapping area of the sites. We

Table 1. Comparison of raccoon abundance and density estimates derived using 3 different trapping protocols in northern Indiana, USA during 2009 and 2010.
Values in parentheses represent 95% confidence intervals for abundance and density estimates and percent difference between estimates derived from either the
raccoon abundance index (RAI) or the spatially-informed RAI (SI-RAI) and estimates derived from capture-mark-recapture (CMR) methods are denoted as
%D.

Study site

2009 2010

CMR RAIa %D CMR RAIa SI-RAIa %D

A (fragmented)
Effective area trapped 3.4 km2 3 km2 3.4 km2 3 km2

Abundance 72.2 (54.4–90.1) 48.0 (NA) �33.5 42.5 (30.5–54.4) 16.0 (NA) �62.3
Density/km2 21.2 (16.0–24.5) 16.0 (NA) �24.7 12.5 (9.0–16.0) 5.3 (NA) �57.6

B (continuous)
Effective area trapped 2.02 km2 3 km2 2.02 km2 3 km2

Abundance 32.6 (24.5–40.7) 25.0 (NA) �23.3 29.5 (22.13–36.84) 12.0 (NA) �59.3
Density/km2 16.1 (12.1–20.2) 8.3 (NA) �48.4 14.54 (11.0–18.2) 4.0 (NA) �72.5

C (fragmented)
Effective area trapped 2.75 km2 3 km2

Abundance 35.7 (26.3–45.0) 15.0 (NA) �58.0
Density/km2 13.0 (9.6–16.4) 5.0 (NA) �61.4

D (continuous)
Effective area trapped 2.72 km2 3 km2

Abundance 21.7 (15.0–28.5) 30.0 (NA) þ38.2
Density/km2 8.0 (5.5–10.5) 10.0 (NA) þ25.2

a Confidence intervals are not available because population parameters were estimated as the total number of individuals captured within each site.
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developed effective trapping areas by overlaying a buffer (e.g.,
Prange et al. 2003) encompassing an area equal to the average
raccoon home range size in our study area (73 ha; Beasley
et al. 2007b), centered on the centroid of each trapping grid
to account for raccoon movements. We then overlaid and
merged trapping grid buffers in ArcGIS (Environmental
Systems Research Institute, Inc., Redlands, CA) to estimate
the total effective area (km2) of CMR trapping grids for each
site. Based on cumulative abundance estimates for all trap-
ping grids within each site, we estimated the overall density
for each site by dividing the estimate of cumulative abun-
dance by the size of the overall buffer.

Radiotelemetry

During June 2009, we radio-collared 24 raccoons (12 male,
12 female) throughout site B with very high frequency
(VHF) transmitters (Wildlife Materials, Carbondale, IL).
We only fitted raccoons �1 year old with radio-transmitters
and we attempted to distribute collars uniformly throughout
the study site. From September 2009 to May 2010, we
attempted to locate radio-collared raccoons every 1–2 days
using a truck mounted Yagi antenna with an electronic
compass (AutoComp 1000, KVH Industries, Middletown,
RI). We collected the majority of locations at night, but
collected approximately 5% of locations during the day to
incorporate den sites in utilization distributions (UDs).
We triangulated raccoon locations using �3 bearings (90%

had �4) collected from telemetry stations along roads fol-
lowing the methods outlined in Beasley et al. (2007b).
Briefly, we collected bearings for a single location within a
20-minute period to reduce error associated with animal
movement. We discarded bearings that did not intersect
any other bearing taken for that individual, as well as all
bearings intersecting at <308. We imported telemetry
bearings into Locate III (Nams 2005) to calculate 95%
maximum-likelihood ellipses and individual point locations.
We estimated triangulation error for our telemetry system,
calculated from 92 known beacon locations, to be 81 m
(SE ¼ 4.65; Beasley et al. 2007b).
Within our study area, raccoons exhibit seasonal variation

in habitat selection corresponding to the availability of agri-
cultural food resources (Beasley et al. 2007a). Thus, we
selected a subset of locations collected prior to corn matura-
tion (Dec–May) to include in the development of our RSF
model to maximize the predictability of our model during the
time period that trapping would occur. For all individuals
with �25 locations collected between December and May,
we used the Home Range Tools extension (Rodgers and
Carr 1998) in ArcGIS to estimate 95% (home range) and
25% (core area) fixed kernel UDs. Core areas were limited to
the 25% UD to ensure only the areas within home ranges
with the most concentrated activity (presumably represent-
ing the most utilized resources) would be included. We
assessed possible bias in home range and core area UD sizes
due to differences in the number of locations used among
individuals using Spearman-rank correlation tests. To esti-
mate the overall space use of radio-collared raccoons as a
function of available habitats in our RSF (see below), we

derived an overall 95% UD for all individuals combined. We
used least-squares cross validation to estimate smoothing
parameters for all UDs.

RSF Development

To quantify landscape-level habitat attributes within the
Upper Wabash River Basin for inclusion in our RSF model,
we used a geographic information system (GIS) database
developed from 1998 United States Geological Survey digital
orthophotos of 1-m resolution (details of habitat delinea-
tions are provided in Retamosa et al. 2008). Wooded streams
and other water resources often are difficult to delineate from
aerial photos. Thus, we also incorporated the National
Hydrography data layer and ground-truthing into our
GIS to more accurately define water availability. We were
interested in testing the performance of a simple model
that could be applied to raccoon trapping efforts in novel
landscapes, without increasing costs associated with density
estimation; therefore, we did not attempt to characterize
fine-scale habitat attributes because of the extensive costs
associated with the acquisition of these data.
We selected a used–unused study design to develop our

RSF model (Manly et al. 2002) of raccoon core areas. We
chose to model core areas because habitat quality within the
study area is relatively homogeneous at a coarse scale (i.e.,
home-range scale) and more detectable at the core area scale
(Beasley et al. 2007a, b). Tominimize any effects of telemetry
error associated with individual point locations and differ-
ences in the number of locations among individuals, we
generated 75 random points within the 25% UD for each
raccoon (1,275 total) using Hawths Tools (Beyer 2004) in
ArcGIS as a measure of used habitats. As an estimate of
unused habitat, we generated an additional 1,275 random
points within the overall 95% UD boundary estimated for all
individuals combined, excluding areas within individual 25%
UDs. Thus, although unused locations fell within the overall
95% UD of radio-collared raccoons, for the purpose of
this analysis, we considered these locations unused as we
were specifically interested in modeling the locations of core-
use areas relative to the remaining 95% UD area. For each of
the 2,550 random points (used and unused), we estimated
the distance to habitat features defined in our GIS (forest,
agriculture, water, developed, and shrubland habitats) using
ArcGIS and designated these values as our habitat variables
included in subsequent analyses.
To test for collinearity among each of our habitat variables,

we examined tolerance and variance inflation factors using
weighted least squares regression, and excluded variables
with tolerance scores <0.4 from analyses (Allison 1999).
We used stepwise logistic regression (used vs. available;
PROC LOGISTIC, SAS version 9.1; SAS Institute, Inc.,
Cary, NC) to identify those habitat variables contributing
most significantly to observed patterns of space use. We
selected habitat variables for inclusion and subsequent
retention into the model at a ¼ 0.15 and 0.05, respectively.
We tested the fit of our model using the Hosmer–Lemeshow
goodness-of-fit test statistic and assessed the ability of
our RSF model to predict areas within the landscape of
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concentrated raccoon activity using k-fold cross validation
with 5 data partitions (Boyce et al. 2002). From these data,
we estimated the proportion of used locations correctly
classified by our model and evaluated the concordance among
data partitions using a Spearman-rank correlation test
(Boyce et al. 2002).

SI-RAI Application
Because we derived our RSF from a heavily forested site (site
B), we limited our evaluation of the SI-RAI approach in
2010 to the continuously forested sites (B and D) to maxi-
mize the utility of our model. For each of these sites, we
generated 10,000 random points within the 3-km2 study site
boundary and estimated the distance of each point to all
habitats retained in our logistic regression model (see above)
using ArcGIS. We then estimated the resource selection
probability for each random point as RSF ¼ exp(b0 þ b1

x1 þ b2 x2. . . þ bn xn), using the coefficients of variables
retained in our final logistic regression model (Manly et al.
2002). We ranked RSF values for each random point and
selected the top 10% of points as the best locations to deploy
traps. Using these points as a list of potential trap site
locations, we randomly selected 50 points as initial trapping
locations, attempting to space traps at least 30 m apart to be
consistent with the RAI protocol, and set traps following the
standard RAI protocol (see above). We moved traps failing
to capture a raccoon after 3–4 days according to the RAI
protocol, but new trap locations were restricted to the top
10% of points identified by our RSF model.

Method Comparison
To test the hypothesis that abundance and density estimates
derived using CMR differed from those estimated from the
standard RAI protocol, we used paired-sample t-tests in SAS
(PROC TTEST, SAS verion 9.1). We developed separate
models for abundance and density using paired CMR and
RIA estimates for sites A and B from 2009 and from sites A
and C in 2010. We evaluated normal probability plots and
Kolmogorov–Smirnov goodness-of-fit statistics to assess
normality and we used folded F-tests to assess the assump-
tion of equal variances.
Because we only trapped 2 sites using the SI-RAI protocol,

we felt performing statistical tests to evaluate whether abun-
dance or density estimates derived using CMR differed from
those estimated from the SI-RAI protocol was inappropri-
ate. Rather, we used confidence intervals associated with
CMR estimates to determine whether each of the estimates
derived using the SI-RAI protocol fell within the upper and
lower confidence limits of CMR estimates.

RESULTS

RAI Estimates
We did not observe any evidence of matching genotypes
within our dataset, suggesting population estimates were not
biased because of tag loss. Across the 4 sites trapped follow-
ing the standard RAI trapping protocol (sites A and B in
2009 and sites A and C in 2010), we captured 104 raccoons
(excluding young-of-the-year) over 2,000 trap nights. The
number of unique individuals captured per site (i.e., abun-

dance) averaged 26, but was highly variable among sites,
ranging from 15 to 48 (Table 1). Density estimates derived
from RAI trapping ranged from 5.0 to 16.0 raccoons/km2

(x ¼ 8.70, SD ¼ 5.11; Table 1).

CMR Estimates
Across the 6 sites trapped using CMR (sites A and B in 2009
and sites A, B, C, and D in 2010), we captured 210 raccoons
(excluding young-of-the-year) over 5,540 trap nights. The
number of unique raccoons captured ranged from 19 to 60
among sites, averaging 35 captures per site.
Analyses of capture histories for grid-based CMR trapping

in Program MARK produced a single top model for sites
trapped during 2009 (pt ¼ ct�sex) and 3 competing models
for sites trapped in 2010 (ptþsexþage ¼ ctþsexþage, pt ¼ ctþsex,
ptþsex ¼ ctþsex) where initial capture probabilities (p) and
recapture probabilities (c) showed temporal variation (t).
Based on abundance estimates derived from our MARK
models, point estimates of raccoon densities obtained using
grid-based CMR ranged from 8.0 to 21.2 raccoons/km2

among trapping sites (x ¼ 14.51, SD ¼ 4.16; Table 1).

SI-RAI Application
Seven raccoons had<25 locations and were excluded from all
analyses. We collected �25 usable radio-locations for 17
individuals (7 male, 10 female) between December and
May 2009–2010. The number of locations per raccoon
ranged from 26 to 92 (total ¼ 1,162, x ¼ 68.35, SD ¼
23.36), although Spearman-rank correlation tests indicated
that neither home range (rs ¼ 0.24, P ¼ 0.34) or core area
(rs ¼ 0.14, P ¼ 0.59) sizes were influenced by the number of
locations used to estimate UDs among individuals with �25
locations. Therefore, we used all locations collected for each
individual to estimate 25% and 95%UDs. Fixed kernel home
range sizes (x ¼ 61.51 ha, SD ¼ 45.25) were smaller than
those typically reported for raccoons in rural landscapes,
supporting previous research investigating raccoon space
use in agricultural ecosystems (Beasley et al. 2007b). On
average, core areas accounted for approximately 8% of the
overall size of home ranges and ranged from 1.94 ha to
16.65 ha in size (x ¼ 5.13, SD ¼ 4.29).
Tolerance scores for all habitat variables within our

weighted least squares regression model were >0.5; there-
fore, we retained all habitat variables for inclusion in our
logistic model. Of the 5 habitat variables included in our
logistic regression analysis, we retained 3 (distance to
agriculture, forest, and water) in the final model, all of
which were significant (P < 0.001). The resulting model
was: RSF ¼ exp(0.6473 þ 0.0041(distance to agriculture)�
0.0230(distance to forest) � 0.0034(distance to water)).
Although all 3 variables were highly significant in our model,
the strength of individual coefficients varied considerably,
with the distance to forest having the strongest influence on
raccoon core area locations followed by the distance to water.
Overall, our RSF model appeared to have a high degree of
predictive power (rs ¼ 0.40, P < 0.0001), with 81% of used
and 58% of random locations classified correctly. Moreover,
the Hosmer–Lemeshow goodness-of-fit test statistic indi-
cated an adequate fit for our model (x2 ¼ 15.02, P ¼ 0.06).
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Within the 2 sites (B and D in 2010) trapped using the
SI-RAI trapping protocol, we captured 42 unique raccoons
(excluding young-of-the-year) over 1,000 trap nights. Of the
42 individuals, we captured 12 at site B and 30 at site D
(Table 1).

Method Comparison
Both abundance and density estimates derived using CMR
were consistently greater than estimates produced from RAI
trapping procedures (t1,3 ¼ 4.7, P ¼ 0.02; t1,3 ¼ 11.3,
P ¼ 0.001, respectively), suggesting that the current RAI
protocol may be underestimating raccoon population sizes
(Table 1). Overall, SI-RAI based densities for sites B and D
were estimated to be 159% less and 25% greater than CMR
estimates, respectively (Table 1). Thus, although the use of
movement data to inform trap placement appeared to
improve capture rates of raccoons relative to RAI (and likely
CMR) estimates for 1 site, capture rates actually decreased
for the other. Both abundance and density estimates were
considerably below the lower confidence limit of the CMR
estimate for site B. In contrast, abundance estimates for site
D exceeded the upper confidence limit of the CMR estimate,
but fell within the 95% confidence interval for density
(Table 1). This discrepancy in the magnitude of difference
between estimates of abundance and density reflects the more
robust and conservative buffer used to estimate density for
CMR relative to index-based estimates.

DISCUSSION

Despite the widespread use of indices in the management of
wildlife species, they often fall short in their ability to accu-
rately estimate population parameters (Eberhardt and
Simmons 1987, Anderson 2001). Nonetheless, the use of
indices is pervasive in the management and conservation of
wildlife populations because of the financial and logistical
advantages associated with such methods. The results of our
study serve to reinforce the value of validating indices, as
both abundance and density estimates derived using the
standard RAI-based approach underestimated population
sizes compared with grid-based CMR trapping, regardless
of the extent of landscape connectivity. Although we com-
pared the performance of 2 indices (RAI and SI-RAI) to a
statistical model (CMR), we did not validate the model-
based estimate to a known population size, and therefore
were unable to determine the accuracy of CMR-derived
estimates. However, a direct test of CMR models is seldom
feasible, and numerous simulation studies indicate statistical
models generally produce population estimates with reduced
bias and greater precision than do indices (e.g., Nichols and
Pollock 1983).
Estimates of abundance and density generated by the RAI

were, on average, 48% less than estimates from CMR trap-
ping, and differed by as much as 62%. Furthermore, across all
sites, RAI estimates consistently were less than the lower
bound of the confidence interval surrounding CMR esti-
mates. Although differences in bait type (CMR: cat food vs.
RAI: marshmallow and Hard CoreTM lure) may have been a
factor influencing these results, index-based estimates also

were found to significantly underestimate raccoon density
relative to CMR for a high density population of raccoons in
Ohio using a consistent bait type (Ramey et al. 2008).
Collectively, these data suggest that the current RAI may
be underestimating actual densities of raccoons, which may
have played a role in the limited oral rabies vaccination
coverage rates observed within bait distribution zones
(approx. 30%; Slate et al. 2009). This finding, coupled
with recent research indicating that a significant proportion
of oral rabies vaccination baits are consumed by non-target
species (Olson et al. 2000, Smyser et al. 2010), thus reducing
functional bait density for raccoons, suggests that opportu-
nities exist to improve the effectiveness of rabies manage-
ment in the United States.
The limited ability of the RAI and other indices to accu-

rately estimate density stems from their inability to incorpo-
rate imperfect detection probabilities of animals into
abundance estimates (Anderson 2001, Williams et al.
2002). For many species, the assumption that all individuals
are captured during an abbreviated sampling event is unre-
alistic, resulting in an underestimate of true populations
sizes. Moreover, abundance estimates derived from indices
may not always be reliable because of spatial, temporal, or
experimental variance in detectability (Anderson 2001,
Rosenstock et al. 2002, Collier et al. 2007). Programs di-
rected at the management of zoonotic diseases are particu-
larly sensitive to the accuracy of population parameters as
underestimates of these parameters may limit the success of
management programs (Konig et al. 2008), whereas over-
estimates of abundance may inflate costs and increase the
likelihood of conflict with non-target species (Flemming
et al. 2000, Campbell et al. 2006). Consequently, managers
need to improve the accuracy of population estimates derived
for disease management programs without significantly in-
creasing costs. In particular, efforts should be made to incor-
porate the estimation of detection probabilities into trapping
protocols to account for variance in detectability and avoid
spurious management decisions (Anderson 2001).
Resource selection functions represent the probability of

use for individual resource units within the landscape (Manly
et al. 2002), and thus the integration of RSFs into trapping
designs should increase detection rates over random trap
placement designs. Although the use of resource selection
models to inform trap placement has an intuitive appeal, our
results are inconclusive with regards to the accuracy of den-
sity estimates derived using this technique as density esti-
mates were similar between CMR and SI-RAImethods for 1
site (D), but not the other (B). However, the lack of consis-
tency in the performance of the SI-RAI in our study may
reflect behavioral differences due to trap habituation, and
subsequently detection probabilities, between the sites rather
than an inconsistent performance of the RSF model. For
example, subsequent to CMR trapping within site B, we
observed a decrease in raccoon captures during SI-RAI
trapping within areas of sampling overlap (i.e., locations
where traps were set during both CMR and SI-RAI trap-
ping), suggesting a potential behavioral response by raccoons
to previous trap exposure at this site may have occurred.
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Moreover, raccoons in site B had been exposed to traps for
�2 trapping cycles (years), whereas site D only was trapped
in 2010 and thus had trap-naı̈ve populations of raccoons.
An inability of the SI-RAI to account for changes in detec-
tion probabilities could have significantly underestimated
raccoon densities within our habituated site. This is further
supported by the decline in concordance between CMR and
RAI density estimates for site A following initial trap expo-
sure from 2009 (75% of CMR estimate) to 2010 (42% of
CMR estimate).
Additional replicates controlling for potential biases in

capture probabilities due to variance in trap habituation
will be necessary to fully evaluate the performance of spatially
informed trap placement models to estimate density. Future
work also should aim to assess the effectiveness of this
technique in novel landscapes to determine the extent of
applying an RSF-based model to guide trap placement in a
broader spatial context. The RSF used in the SI-RAI pro-
tocol was generated from radiotelemetry data collected from
17 raccoons from a single study site (site B), and future work
should include collecting spatial data from more individuals
distributed over a broader range of landscape configurations.
Based on the similarities in density estimates between CMR
and SI-RAI for our trap-naı̈ve site, we are optimistic that the
use of RSFs to objectively guide trap placement will increase
the proportion of individuals captured within a population
relative to random or subjective methods of trap placement.
However, although improvements in index performance
may be useful for some management practices (e.g., trap-
vaccinate-release programs), this method still suffers from an
inability to account for variance in detection probabilities.
Thus, the full effectiveness of a RSF-based trapping design
will only be realized upon integration into trapping protocols
allowing for the quantification of detection probabilities.

MANAGEMENT IMPLICATIONS

In disease vaccination campaigns, a threshold vaccination
rate (e.g., 50–70% for rabies) is required to break disease
transmission cycles (Hethcote 1978, Thulke and Eisinger
2008). Maximizing vaccination rates is dependent on ensur-
ing that a sufficient number of baits are accessible to the
target population, which can be impacted by competition for
bait among non-target species (Smyser et al. 2010) as well as
potentially other factors such as the presence and distribution
of attractive anthropogenic foods (Prange et al. 2004).
Our work indicated that the RAI underestimated raccoon
abundance when compared to CMR. Consequently, RAI-
calibrated vaccine bait densities may not always be sufficient
to induce adequate herd immunity to control rabies. Despite
this limitation, the performance of the RAI was fairly con-
sistent throughout this study, suggesting that calibrating the
index based on known population sizes may be feasible.
Nonetheless, we suggest the following in order to improve
the performance of the RAI. First, select trap locations in a
probabilistic rather than subjective manner. Probabilistic
sampling will allow for inductive inference from the sample
data (i.e., a 3-km2 reference grid) to the greater population,
the scale at which vaccine baits are typically distributed.

Second, employ a double sampling approach (Eberhardt
and Simmons 1987) where grid- or UD-based mark-recap-
ture designs are used to estimate abundance at a few sites and
a probability-based index is used on a larger sample of areas.
If a linear relationship exists between data collected from the
2 methods, then the index values can be calibrated by that
relationship (Eberhardt and Simmons 1987). Finally, pro-
vide measures of precision for index values so that decisions
regarding the density of baits distributed can be adjusted
relative to the uncertainty of abundance estimates.
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